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Abstract
In the present paper by using the Tresse theorem we describe a method of
construction of all invariants and the differential invariants for a given Lie group,
which means invariants containing derivatives of any order. Some important
examples from analysis, geometry and physics are presented. In particular,
invariants for the nonlinear Schrödinger equation will be investigated.

PACS number: 11.30.−j
Mathematics Subject Classification: 53A55, 34C14

1. Introduction

In the group theoretical analysis of differential equations and physical applications, expressions
that are invariant with respect to some group of transformations, such as rotation, Lorentz or
Poincaré groups, as well as their subgroups and extensions, play a prominent role in the study
and establishment of conservations laws. Such significant functions for example are distance,
pseudodistance, curvature, torsion, etc [1]. The essential feature of some of them, describing
the physical phenomena in the space (x1, x2, . . . , xn, u) ∈ R

n+1, where u = u(x1, x2, . . . , xn),
is the fact that they contain derivatives of the function u. In many cases there are the first- and
second-order derivatives, but generally one can construct invariants containing derivatives of
any order.

In this paper, we use the Tresse theorem [2–4] in order to describe a method of constructing
a basis of invariants and the so-called invariant differentiation operators for a given Lie group
G. Then, by using the basis and invariant differentiation operators one can obtain any invariant
of G, i.e. any invariant containing derivatives of any order. We apply the Tresse theorem to
the most important groups of transformations, that is a rotation group, the Lorentz groups
in several cases according to the dimension and to the symmetry group of the nonlinear
Schrödinger equation with arbitrary potential depending on |ψ | and in particular to equation
with cubic nonlinearity.
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In this paper, we also analyse the differential invariants of nonlinear Schrödinger equations
and establish which of them can be considered as fundamental, in the sense they are not
obtained from other invariants by the application of the Tresse theorem.

The plan of this paper is as follows. In section 2, we give basic notations and definitions. In
section 3, we formulate the Tresse theorem and some important properties of the differential
invariants of a Lie group G. Several examples, illustrating an application of this theorem
to the rotation and Lorentz groups, are presented. In section 4, having the equivalence
algebra of nonlinear Schrödinger equation with variable potential, we construct differential
invariants and invariant differentiation operators of symmetry algebra of this equation. Then,
we investigate which invariants are fundamental, in the sense that they cannot be obtained
from another invariants by using the Tresse theorem. In particular, we consider equation with
cubic nonlinearity. Conclusions are presented in section 5.

Differential invariants and their applications for other important equations in physics, e.g.
KdV, KP and Monge–Ampère equations, have been investigated by Olver, Chen, Pohjanpelto,
Yehorchenko and Nutku, Sheftel in [5–8]. The differential invariants and the so-called semi-
invariants of the generalized Schrödinger equation by using equivalence transformations have
been described by Senthilvelan, Torrisi and Valenti in [9].

2. Basic notations and definitions

We use the following notation: u denotes a real function u(x1, . . . , xn), uxi
denotes the partial

derivative ∂u
∂xi

, u
k

denotes the set of all partial derivatives of the order k of a function u and Di

denotes the operator of the full differentiation over xi .
Let consider the action of a Lie group G in the space of variables (x1, x2, . . . , xn, u),

where u is a dependent variable and corresponding infinitesimal generator X = ξ i∂xi
+ η∂u in

the Lie algebra of a Lie group G.
We denote by X

m
the extension of the mth order of an operator X to the space

(x1, x2, . . . , xn, u, u
1
, u

2
, . . . , u

m
) and define it by the formula

X
m

= X +
m∑

p=1

ζ i1,...,ip ∂uxi1,...,ip
,

where coefficients ζ i1,...,ip are defined by

ζ i1,...,ip = Di1,...,ip (η − uxk
ξ k) + uxi1 ,...,xip ,xik

· ξk,

where the summation is over k, (i1, i2, . . . , im) being fixed, ξ = ξ(x, u, u
1
, . . . , u

s
), η =

η(x, u, u
1
, . . . , u

s
).

Definition 2.1. Let G be a Lie group of transformations with the parameter a ∈ R, f, g ∈
G, x ∈ R

n, u = u(x1, . . . , xn) and x̃ = f (x, u, a), ũ = g(x, u, a):

(a) A function F(x, u) is called an invariant of G iff

∀a∈RF (̃x, ũ) = F(x, u).

(b) An expression F(x, u, u
1
, u

2
, . . . , u

m
) is called a differential invariant (of the mth order) of

the group G iff

∀a∈RF (̃x, ũ, ũ
1
, ũ

2
, . . . , ũ

m
) = F(x, u, u

1
, u

2
, . . . , u

m
).

This is an invariant of the action of the group G extended to the space (x, u, u
1
, u

2
, . . . , u

m
).

(c) The general (or universal) differential invariant of the mth order is the set of all differential
invariants from the order zero to the order m inclusive.
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(d) A maximal set of functionally independent invariants of the order r � m of a Lie group G
is called a functional basis of the mth-order differential invariants of G.

(e) Q is called an operator of the invariant differentiation, if for any differential invariant F
of the group G the expression QF is also the differential invariant of the group G.

For an infinitesimal generator X of the group G the infinitesimal invariance test has the form

X
m
F(x, u, u

1
, u

2
, . . . , u

m
) = 0.

We use these notions following Ovsiannikov [3] and Olver [10].

3. The Tresse theorem

In the theory of differential invariants for Lie groups the following theorem is fundamental.

Theorem 3.1 (Tresse, 1894) [2, 3]. For a given Lie group G with r parameters, acting in the
space (x, u), x ∈ V ⊂ R

n, u : V → R, there exists a finite basis of functionally independent
invariants and exist operators of the invariant differentiation Qj such that arbitrary fixed order
invariant of G can be obtained in a finite number of invariant differentiations and functional
operations on invariants from the basis.

This finite basis of invariants includes in the general differential invariant of the minimal
order s � 1 such that

∀(x,u)∈V ×R r = rank[ξ(x, u), η(x, u), ζ 1(x, u, u
1
), . . . , ζ s−1(x, u, u

1
, . . . , u

s−1
)]. (3.1)

The number of operators of the invariant differentiation, independent of the field of invariants
of G, is equal to n. They are defined by

Qj = λi
j (x, u, u

1
, . . . , u

s
)Di, (3.2)

where λj = [
λi

j

]
satisfies the commutation condition of operators Qj and Xν:

X
s ν

λj = λi
jDi(ξν), (3.3)

where the summation is over i = 1, . . . , n and Xν = ξ i
ν∂xi

+ ην∂u, for ν = 1, . . . , r ,
are generators of the Lie algebra of the group G. In (3.1), ξ(x, u) = [ξ1, . . . , ξr ]T , ξν =[
ξ 1
ν , . . . , ξn

ν

]T
, η(x, u) = [η1, . . . , ηr ]T .

Remark 3.1. If a group G acts in the space (x1, . . . , xn, u1, . . . , uk) ∈ R
n+k , then the number

of elements in a basis of the mth-order general invariant is given by the formula

R(m) = n + k ·
(

n + m

n

)
− rm, (3.4)

where rm is a rank of the matrix of coefficients of the mth prolongation of operators Xν .
Then the general mth-order invariant is expressed by arbitrary function depending on

basic invariants �(ω1, . . . , ωR(m)).

Remark 3.2. If all invariants of the order s can be obtained from invariants of the order
s − 1 by a finite number of invariant differentiation and functional operations then the basis
of invariants from the Tresse theorem includes in the general invariant of the order s − 1. By
analogy we have this property of reduction of the order for lower orders.

Fact 3.1 [3]

(a) The set of invariant differentiation operators for a given Lie group G forms a Lie algebra
over the field of invariants of G.
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(b) If an operator Y commute with the infinite prolongation of any operator from Lie algebra
of a Lie group G, then Y is an operator of the invariant differentiation for G.

(c) The basis of differential invariants from the Tresse theorem for a Lie group G uniquely
defines G.

We construct the following examples in order to illustrate the application of the Tresse theorem
and the method of construction of invariants for important geometrical and physical groups of
transformations. In all examples a denotes the group parameter and ωki denotes the differential
invariants of the order k.

Example 3.1. The group of rotations in

R
3 :


x̃ = x cos a − y sin a

ỹ = x sin a + y cos a, r = 1, s = 1,

ũ = u

with infinitesimal generator X = −y∂x + x∂y .
Invariants of the order zero satisfy the equation Xω = 0 and they are ω01 = u, ω02 =

x2 + y2.
Then X

1
= −y∂x + x∂y − uy∂ux

+ ux∂uy
and system (3.3) has the form

xλy − yλx − uyλux
+ uxλuy

= λ1 · [0, 1]T + λ2 · [−1, 0]T .

Hence, we find λ1, λ2 and the invariant differentiation operators

Q1 = uxDx + uyDy, Q2 = −uyDx + uxDy.

The basis of a general invariant of the first order, according to formula (3.4), consists of four
elements. As there are two basic zeroth-order invariants, as remaining two invariants contain
the first-order derivatives. Among all the first-order invariants we can choose two functionally
independent ones in the following way:

ω11 = u2
x + u2

y = Q1(ω01), ω12 = xux + yuy = 1
2Q1(ω02),

and an auxiliary invariant ω13 = xuy − yux , which can be obtained in the following way:

ω13 =
√

ω02 · ω11 − ω2
12.

The second-order basic invariants are

ω21 = Q1(ω13) = xuyuyy − yuxuxx + (xux − yuy)uxy,

ω22 = 1

2
Q1(ω11) = u2

xuxx + u2
yuyy + 2uxuyuxy,

ω23 = Q1(ω12) + Q2(ω13)

ω12
= uxx + uyy,

and an auxiliary invariant

ω24 = Q1(ω12) − ω11 = xuxuxx + yuyuyy + (yux + xuy)uxy.

Then the Gaussian curvature has the invariant form

K = k1 · k2 = uxxuyy − u2
xy(

1 + u2
x + u2

y

)2 = ω02 · ω22 · ω23 − ω2
21 − ω2

24

ω02 · ω11 · (1 + ω11)2
,

and the average curvature has the invariant form

H = zxx

(
1 + z2

y

) − 2zxyzxzy + zyy

(
1 + z2

x

)
2
(
1 + u2

x + u2
y

)3/2 = ω23 · ω11 − ω22 + ω23

2(1 + ω11)3/2
.
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For this group we have the property that all differential invariants can be obtained from
ω01, ω02 by invariant differentiation and functional operations. It means that the most important
information about invariancy is contained in invariants of the order zero, i.e. the radius and the
invariant function u. Note that the coefficients of the first and second fundamental quadratic
forms for a surface are not invariant.

Remark 3.3. For the group of rotations in R
3 with the infinitesimal generators

X1 = −y∂x + x∂y, X2 = −u∂x + x∂u, X3 = −u∂y + y∂u,

when the dependent variable u also rotates, the Gaussian curvature is not an invariant, because

X
2 2

K = 3ux · K, X
2 3

K = 3uy · K.

Remark 3.4. The Tresse theorem does not provide a real algorithm of obtaining all basic
invariants of arbitrary order. It only states that there exists a basis of invariants and yields
information about the quantity of elements in the basis. We find all invariants of the mth order
using the condition X

m
F(x, u, u

1
, . . . , u

m
) = 0. Further, among these we choose R(m)−R(m−1)

functionally independent invariants.

Example 3.2. The Lorentz group in (x, y, u) ∈ R
3 with the generator

X = y∂x + x∂y, r = 1, s = 1.

The base of invariants of the order zero has the form u, x2 − y2.
The first-order basic invariants are u2

x − u2
y, xux + yuy .

The invariant differentiation operators are

Q1 = xDx + yDy, Q2 = uxDx − uyDy,

and the first-order basic invariants can be obtained form the zeroth-order ones.
The invariant differentiation of variable u in the Q1 direction gives the nth order invariant

of the form
n∑

k=0

(
n

k

)
xkyn−k · ux...x︸︷︷︸

k

y...y︸︷︷︸
n−k

.

Example 3.3. The Lorentz group in (t, x, y, z, u) ∈ R
5 with the generators

X1 = t∂x + x∂t , X2 = t∂y + y∂t , X3 = t∂z + z∂t ,

X4 = −y∂x + x∂y, X5 = −z∂x + x∂z, X6 = −z∂y + y∂z, r = 3, s = 3.

In this case, the rank of the first prolongation of generators is equal to 5, the rank of the second
prolongation is equal to 6 and one needs to use the third prolongation.

Basic invariants of the order zero are u, t2 − x2 − y2 − z2.
Basic first-order invariants are u2

t − u2
x − u2

y − u2
z, tut + xux + yuy + zuz.

The invariant differentiation operators Q1,Q2 have the form

Q1 = tDt + xDx + yDy + zDz, Q2 = utDt − uxDx − uyDy − uzDz.

Further, using the notation (t, x, y, z) = (x0, x1, x2, x3) one can write Q3 and Q4:

Q3 =
3∑

i=0

λiDxi
, Q4 =

3∑
j=0

λjDxj
,
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where for Q3 we have

λ0 = ux0 · ux0x0 −
3∑

k=1

uxk
· ux0xk

, λi =
3∑

k=1

uxk
· uxixk

− ux0 · ux0xi
, i = 1, 2, 3,

and for Q4 we have

λ0 =
3∑

k=0

xk · ux0xk
, λj = −

3∑
k=0

xk · uxj xk
, j = 1, 2, 3.

Note that, as above, the first-order differential invariants can be obtained from zeroth-order
ones by using Q1,Q2.

The differential invariants for the group O(n) and its extensions, important in physical
investigations, are described in [11].

4. Differential invariants for the nonlinear Schrödinger equation

4.1. The general case iψt + ψxx + W(|ψ |) · ψ = 0

Let consider the nonlinear Schrödinger equation of the form

iψt + ψxx + W(|ψ |) · ψ = 0, (4.1)

where x ∈ R
1 and W is an arbitrary smooth function.

The whole equivalence algebra and its properties for this equation are given in [12]. The
group transformations are build for functions W,ψ,ψ∗, where ψ∗ is the complex conjugation
of ψ and ψψ∗ = |ψ |2. In this approach, we treat the potential W as a new variable which
transforms itself, besides the transformations of ψ and ψ∗. If we assume that the variable
W is invariant, then from the whole equivalence algebra (described in [12]) we can choose
subalgebra of symmetry of this equation for any W . The generators of this subalgebra are in
the form

X1 = ∂t , X2 = ∂x, X3 = ψ∂ψ − ψ∗∂ψ∗, X4 = t∂x +
i

2
x(ψ∂ψ − ψ∗∂ψ∗)

(4.2)

with commutation relations

[X1, X2] = 0, [X1, X3] = 0, [X1, X4] = X2,

[X2, X3] = 0, [X2, X4] = i

2
X3, [X3, X4] = 0.

Hence, we observe that it is a solvable Lie algebra. We construct invariants of this algebra,
noting that those invariants do not depend on variables t, x.

The invariant of the order zero is ω0 = ψψ∗ = |ψ |2.
The first-order invariants we find by integration of the characteristic equations system for

X4 and writing solutions in the invariant form with respect to X3:

ω1 = ψx

ψ
+

ψ∗
x

ψ∗ , ω2 = ψt

ψ
− i ·

(
ψx

ψ

)2

, ω3 = ψ∗
t

ψ∗ + i ·
(

ψ∗
x

ψ∗

)2

. (4.3)

Note that ωi, i = 0, 1, 2, 3, are functionally independent (over R). Moreover, the matrix of
coefficients of the first prolongation of operators from (4.2) has the rank equals 4. Hence,
according formula (3.4) this is the maximal system of the first-order invariants of this algebra.
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Remark 4.1. By using the differential invariants (4.3) one obtains the invariant, nonlinear
equations of the first order, connected with the Schrödinger equation:

iψt +
ψ2

x

ψ
= c1ψ, (4.4)

iψ∗
t − (ψ∗

x )2

ψ∗ = c2ψ
∗. (4.5)

The physical properties of these equations, from the group-theoretical point of view, are also
interesting.

The general second-order differential invariant of the Lie algebra (4.2) is easily seen to
have ten generators. Among these, we have ωi for i = 0, 1, 2, 3 and additional six containing
derivatives of second order. We find the invariant differentiation operators Q1,Q2 by using the
Tresse theorem and show that ωi, i = 0, 1, 2, 3, and Q1,Q2 suffice to express all invariants
containing derivatives of second order.

System (3.3) for operator X1 has the form

X
2 1

·
[
λ1

λ2

]
= λ1 · Dt

[
1
0

]
+ λ2 · Dx

[
1
0

]
,

that is [
λ1

t

λ2
t

]
=

[
0
0

]
.

We obtain that λ1, λ2 do not depend on t. By analogy from equation for X2 they do not depend
on x. Now let us write system (3.3) for X3, X4, setting that λi(ψ,ψ∗, ψt , ψ

∗
t , ψx, ψ

∗
x ):

ψ ·
[
λ1

ψ

λ2
ψ

]
− ψ∗ ·

[
λ1

ψ∗

λ2
ψ∗

]
+ ψt ·

[
λ1

ψt

λ2
ψt

]
+ ψx ·

[
λ1

ψx

λ2
ψx

]
− ψ∗

t ·
[
λ1

ψ∗
t

λ2
ψ∗

t

]
− ψ∗

x ·
[
λ1

ψ∗
x

λ2
ψ∗

x

]
=

[
0
0

]
,

(4.6)

i

2
xψ ·

[
λ1

ψ

λ2
ψ

]
− i

2
xψ∗ ·

[
λ1

ψ∗

λ2
ψ∗

]
+

( i

2
xψt − ψx

)
·
[
λ1

ψt

λ2
ψt

]
+

( i

2
ψ +

i

2
xψx

)
·
[
λ1

ψx

λ2
ψx

]

−
( i

2
xψ∗

t + ψ∗
x

)
·
[
λ1

ψ∗
t

λ2
ψ∗

t

]
−

( i

2
ψ∗ +

i

2
xψ∗

x

)
·
[
λ1

ψ∗
x

λ2
ψ∗

x

]
=

[
0
λ1

]
. (4.7)

Solving this system we obtain[
λ1

λ2

]
=

[
0
1

]
∨

[
λ1

λ2

]
=

[
ψψ∗

i

]
(ψψ∗

x − ψxψ
∗).

Hence, the invariant differentiation operators are in the form

Q1 = Dx, Q2 = ψψ∗Dt + i(ψψ∗
x − ψxψ

∗)Dx.

By fact (3.1) we have the invariant differentiation operator also in the form

Q3 = [Q1,Q2] = (ψxψ
∗ + ψψ∗

x )Dt + i(ψψ∗
xx − ψxxψ

∗)Dx.

We observe that the coefficients of the invariant differentiation operators are real. Indeed
ψψ∗ ∈ R and we have
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i(ψψ∗
x − ψxψ∗) = −i(ψ∗ψx − ψ∗

x ψ) = i(ψψ∗
x − ψxψ

∗),

ψxψ∗ + ψψ∗
x = ψ∗

x ψ + ψ∗ψx = ψxψ
∗ + ψψ∗

x ,

i(ψψ∗
xx − ψxxψ∗) = −i(ψ∗ψxx − ψ∗

xxψ) = i(ψψ∗
xx − ψxxψ

∗).

Hence, if ω = f (ψ,ψ∗, . . .) is an invariant, then ω∗ = f (ψ,ψ∗, . . .) is also an invariant. It
is important that ω1 can be gained using ω0 by

ω1 = Q1(ω0)

ω0
.

Moreover,

ω2 + ω3 = Q2(ω0)

ω2
0

.

Nevertheless, one cannot obtain all differential invariants of the first order using ω0 by invariant
differentiation and functional operations. In this way, only two functionally independent
expressions can be obtained while the basis of the first-order differential invariants contains
three elements. Whereas additionally one separates variables ψ,ψ∗ then it is possible to
obtain three basic invariants of the first order.

We show that one obtains the basic second-order differential invariants from the first
order ones by invariant differentiation, hence the basis from the Tresse theorem includes in
the general invariant of the first order. In construction of functionally independent invariants,
containing derivatives of the second order ψxx, ψ

∗
xx, ψtx, ψ

∗
tx , ψtt , ψ

∗
t t , we use the property

that Q1,Q2 commute with operators from algebra (4.2). Noting that

X
1 4

(
ψx

ψ

)
= i

2
, X

1 k

(
ψx

ψ

)
= 0, k = 1, 2, 3,

we can write

X
1 4

Dx

(
ψx

ψ

)
= DxX

1 4

(
ψx

ψ

)
= Dx

(
i

2

)
= 0.

Hence, the expression

ω4 = Dx

(
ψx

ψ

)
= ψxx

ψ
− ψ2

x

ψ2

is the second-order differential invariant of algebra (4.2).
Because of the reality of the invariant differentiation operators we can write that

ω∗
4 = ψ∗

xx

ψ∗ − ψ∗2
x

ψ∗2

is also the differential invariant of algebra (4.2).
Further we obtain

ω5 = Q2

(
ψx

ψ

)
= ψψ∗ ·

(
ψtxψ − ψxψt

ψ2

)
+ i(ψψ∗

x − ψxψ
∗) ·

(
ψxx

ψ
− ψ2

x

ψ2

)
,

ω∗
5 = ω5, ω6 = Q2(ω2), ω∗

6 = Q2(ω2).

The invariants ωk, ω
∗
k , k = 4, 5, 6 are functionally independent (over R), because they contain

different derivatives of the second order of ψ and ψ∗. Hence, ωi, ω
∗
i , i = 0, . . . , 6, form the

basis of the second-order general invariant of algebra (4.2) and all second-order differential
invariants can be obtained from first order ones.
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Remark 4.2. Note that one cannot get ωk, ω
∗
k , k = 4, 5, 6, by invariant differentiation and

functional operations using only ω0, but it is possible to obtain them using ωk, k = 0, 1, 2, 3.
Moreover, separating the variables ψ and ψ∗ after invariant differentiation the previously

studied Schrödinger equation can be deduced, as well as its differential invariants of second
order. This fact shows the generality of the Schrödinger equation and the magnitude of the
associated conservation laws. Further, an infinite sequence of integrals of motion can be
constructed. It is therefore possible to establish integrals containing derivatives of arbitrary
order.

We show the construction of nonlinear Schrödinger equation using obtained invariants.
To this end, consider a new invariant 
:


 = i · ω2 + ω4 = i
ψt

ψ
+

ψxx

ψ
.

Now we take invariant equation


 = F(ω0),

where F is an arbitrary function. Hence,

i
ψt

ψ
+

ψxx

ψ
= F(|ψ |2).

Now multiplying by ψ and putting F(|ψ |2) = −W(|ψ |) we obtain the studied nonlinear
Schrödinger equation iψt + ψxx + W(|ψ |) · ψ = 0.

4.2. The case iψt + ψxx + |ψ |2ψ = 0

Now let consider the nonlinear Schrödinger equation of the form

iψt + ψxx + |ψ |2ψ = 0. (4.8)

The generalization of this equation with functional coefficients and its differential invariants
were investigated by Senthilvelan, Torrisi and Valenti in [9] by using equivalence
transformations. They showed that this generalized Schrödinger equation admits an infinite-
dimensional equivalence symmetry algebra. The corresponding Lie algebra of point
symmetries is also infinite. However, in order to deduce the main physical properties we
only need to work with a finite quantity.

Fact 4.1. The complete symmetry algebra of equation (4.8) is infinite dimensional and has the
infinitesimal generators of the form

Xα1 = α1(t)ψ∂ψ −
[

i

ψ
· α′

1(t) + ψ∗α1(t)

]
∂ψ∗, (4.9a)

Xα2 = α2(t)∂t +
1

2
xα′

2(t)∂x +
i

8
x2ψα′′

2 (t)∂ψ

+
1

8ψ2
[x2ψα′′′

2 (t) − 2iψα′′
2 (t) − 8ψ2ψ∗α′

2(t) − ix2ψ2ψ∗α′′
2 (t)]∂ψ∗, (4.9b)

Xα3 = α3(t, x)∂ψ − 1

ψ2
[iα′

3t (t, x) + α′′
3xx(t, x) + 2ψψ∗α3(t, x)]∂ψ∗, (4.9c)

Xα4 = α4(t)∂x +
i

2
xψα′

4(t)∂ψ +
1

2
x

[
α′′

4 (t)

ψ
− iψ∗α′

4(t)

]
∂ψ∗, (4.9d)

where α1(t), α2(t), α3(t, x), α4(t) are the arbitrary real functions.
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Here there is an asymmetry with respect to ψ and ψ∗. The coefficient at ∂ψ∗ has such
a form, in order to hold the invariancy condition. However, if we consider the system of
equations (the equation in question and the conjugated equation){

iψt + ψxx + |ψ |2ψ = 0

−iψ∗
t + ψ∗

xx + |ψ |2ψ∗ = 0,
(4.10)

then we obtain only the five-dimensional, solvable Lie algebra of symmetry of this system:

X1 = ∂t , X2 = ∂x, X3 = ψ∂ψ − ψ∗∂ψ∗,

X4 = t∂x +
i

2
x(ψ∂ψ − ψ∗∂ψ∗), X5 = 2t∂t + x∂x − ψ∂ψ − ψ∗∂ψ∗

(4.11)

with commutation relations as in (4.2) and with respect to the fifth generator we have:

[X1, X5] = 2X1, [X2, X5] = X2, [X3, X5] = 0, [X4, X5] = −X4.

Such consideration is very natural, because if the Schrödinger equation is fulfilled, then
the conjugated equation ought also to be fulfilled. In algebra (4.11) we have four operators
from algebra (4.2) and new operator X5. Note that these operators satisfy the condition X = X

and one can obtain them from the whole algebra of symmetry of equation (4.8) requiring this
condition.

We find the differential invariants and the invariant differentiation operators for algebra
(4.11).

Note that this algebra has not differential invariants of the order zero. Indeed

R(0) = 2 + 2 ·
(

2 + 0

2

)
− 4 = 0.

There are three first-order basic differential invariants, because R(1) = 2 + 2 · (2+1
2

) − 5 = 3.
One can obtain them by functional operations on invariants of algebra (4.2):

ω̃1 = ω1√
ω0

= ψx

|ψ |ψ +
ψ∗

x

|ψ |ψ∗ ,

ω̃2 = ω2

ω0
= ψt

|ψ |2ψ − i ·
(

ψx

|ψ |ψ
)2

,

ω̃3 = ω3

ω0
= ψ∗

t

|ψ |2ψ∗ + i ·
(

ψ∗
x

|ψ |ψ∗

)2

.

By analogy we show that it is possible to construct the six second-order basic differential
invariants using invariants of algebra (4.2):

ω̃4 = ω4

|ψ |2 = 1

|ψ |2ψ2
(ψxxψ − ψ2

x ), ω̃∗
4 = ω̃4,

ω̃5 = ω5

|ψ |5 = ψtxψ − ψxψt

|ψ |3ψ2
+

i(ψψ∗
x − ψxψ

∗)
|ψ5| ·

(
ψxx

ψ
− ψ2

x

ψ2

)
, ω̃∗

5 = ω̃5,

ω̃6 = ω6

|ψ |6 , ω̃∗
6 = ω̃6.

It is easily seen that ω̃k, ω̃
∗
k are functionally independent over R, because they contain the

second-order derivatives independently. It is also easy to check that one can obtain the new
second-order basic invariants from the first order ones by new invariant differentiation and
functional operations.

The new invariant differentiation operators for algebra (4.11) are the following:

Q̃1 = 1

|ψ | · Q1 = 1

|ψ |Dx, Q̃2 = 1

|ψ |4 · Q2 = 1

|ψ |2 Dt +
i(ψψ∗

x − ψxψ
∗)

|ψ |4 Dx.
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We show the invariant construction of the studied Schrödinger equation by using the first-order
differential invariants. First, we construct ω̃4:


1 = Q̃1(ω̃1) = ψxxψ − ψ2
x

|ψ |2ψ2
− 1

2|ψ |3 (ψxψ
∗ + ψψ∗

x ) · ω̃2.

Because of the invariancy of the last expression we get ω̃4 by functional operations.
Now we take the invariant equality:

i · ω̃2 + ω̃4 + 1 = 0 (4.12)

and we have

i
ψt

|ψ |2ψ +

(
ψx

|ψ |ψ
)2

+
1

|ψ |2ψ2

(
ψxxψ − ψ2

x

)
+ 1 = i

ψt

|ψ |2ψ +
ψxxψ

|ψ |2ψ2
+ 1 = 0,

so the studied Schrödinger equation. By conjugation of (4.12) we obtain an analogous
identity.

Remark 4.3. Note that in general for the operators Xαk
from algebra (4.9) the expression ψψ∗

is not an invariant. Hence, these operators generate a non-physical symmetry transformations
of the Schrödinger equation. It appears that the condition X = X is also not sufficient to
the conservation of the function ψψ∗. Indeed, in algebra (4.11) there is the operator X5, for
which the function ψψ∗ is not an invariant.

Finally, we obtain that only four operators from algebra (4.2) generate the physical
symmetry transformations, conservating the function ψψ∗.

5. Conclusions

The Tresse theorem allows one to describe the structure of all invariants and differential
invariants of a given Lie group by constructing a basis of invariants. Moreover, one can
state whether or not some invariant is fundamental, meaning whether it can be obtained from
another invariants by invariant differentiation and functional operations.

Such fundamental values, forming a basis of invariants, describe the basic conservation
laws in geometry and physics. It is important that for any Lie group with a finite number of
group parameters there exists a finite basis of invariants. Physically, it means that for some
space with a given symmetry there exists a finite set of basic conservation laws. Another
laws can be deduced from this set. For example, for the rotation and Lorentz groups in
examples (3.1), (3.2), (3.3) we show that the basis consists only of the zeroth-order invariants,
and for the symmetry group of the nonlinear Schrödinger equation the basis also contains
invariants of the first order. Additionally, the operators of the invariant differentiation give
invariant vector fields, important in applications and in theoretical physics.

This approach enables one to find perhaps more fundamental or general rules and laws
then a studied equation. It has been pointed out that the invariance of ψψ∗ determines the
considered Schrödinger equations. Moreover, it enables one to construct some new invariant
equations, for example (4.4), (4.5), which may also describe fundamental physical rules.
Additionally, it is useful by the classification of PDEs with symmetry point of view, giving
the invariant form of studied equations.

It is important that the studied general Schrödinger equation is a consequence of
fundamental invariant value ψψ∗, obtained by invariant differentiation and separation of
the variables ψ,ψ∗. This fact shows the generality of the Schrödinger equation and the
magnitude of the associated conservation laws.



9342 T Czyżycki

It is likely that the approach presented in this work is also valid for equivalence
transformations (see, e.g., [9, 12, 13]). For equations of these classes, differential invariants
and equivalence properties can be analysed in a unified manner, and new interpretations of the
involved quantities and observables could arise. Work in this direction will be the subject of
further investigation.
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